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1 Introduction

The theorem of Skolem, Mahler, and Lech gives a condition on the set Sa = {n ∈ N|an = 0}, where we have
some rational function, where for a field K of characteristic 0, with f, g ∈ K[x],

f(x)

g(x)
=
∞∑
i=0

aix
i

Note that we can always find such {ai} because of Taylor’s theorem. As [Lec53] noted, Skolem proved the
result for K = Q and Mahler proved the result for algebraic extensions of Q, before Lech himself proved the
theorem for all fields of characteristic 0. More recently, there do exist generalizations to fields of positive
characteristic, with [Der05] fully generalizing the theorem. We will prove the result for K = Q using a
simpler proof than Lech’s, due to Hansel (see [Han86]).

2 Linear Recurrence, Rational Functions, and Prerequisites

We will work over the field K = Q. First, we need a definition.

Definition 1. A linear recurrence of dimension k is a sequence (an)n∈N such that a0, ..., ak−1 ∈ Q and there
exist c1, ..., ck such that for all n ≥ k,

an = c1an−1 + c2an−2 + ...+ akcn−k =

k∑
i=1

cian−i

For the sake of avoiding redundancy, we assume ck 6= 0. Given a linear recurrence (an), we define the zero
set,

Sa = {n ∈ N|an = 0}

A natural question to ask is what sets Sa ⊂ N can occur? Let us try some examples.

Example 2. Let a0 = 0, a1 = 1 and let an = an−1 + an−2. This is, of course, the Fibbonacci sequence. It
is easy to see that an ≥ an−1 for all n, so in this case Sa = {0}.

Example 3. Let a0 = 1, a1 = −5, a2 = 13 and an = 5an−1 − 16an−2 + 12an−3. Our trick in the above
sequence clearly does not work. However, we do find, after a little thought, that after reduction (mod 4)
we get an ≡ an−1 and so we get Sa = ∅.

Example 4. Now consider a0 = a1 = 1, an = an−1 − an−2. It is immediate that

Sa = {n ∈ N|n ≡ 2 (mod 3)}

.
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At first glance, these seem very different, but we will show that these three examples demonstrate all of
the possibilities. Our main theorem:

Theorem 5 (Skolem-Mahler-Lech). Let (an)n∈N be a linear recurrence. Then there exists some r ∈ N and
j1, ..., jm ∈ N with m possibly equal to 0 distinct elements and some finite subset Z ⊂ N such that

Sa = Z ∪
m⋃
i=1

{ji + rq|q ∈ N}

In other words, the zero set of the sequence is a union of a finite set and a finite number of arithmetic
progressions all with the same common difference.

The astute reader may note that this is not the same as the traditional theorem of Skolem, Mahler, and
Lech. To translate between our statement and theirs, we need the following proposition.

Proposition 6 (Schützenberger). If P ∈ KJxK such that

P =

∞∑
i=0

aix
i

Then P is rational if and only if there exists some N, k ∈ N such that for all n > N , the (ai) form a linear
recurrence of dimension k.

Proof. Note that P is rational if and only if there exist f, g ∈ K[x] such that P = f
g . Let g = gmx

m + ...+g0.
There always exists a power series expansion of a rational function by applying Taylor’s theorem. Thus we
have P rational if and only if there is some polynomial g such that gP = f a polynomial. Thus if deg f = n0,
and gP =

∑∞
n=0 bnx

n then for n > n0, bn = 0. Note however that 0 = bn = g0an + gn−1an−1 + ...+ g0an−k.
This is clearly true if and only if the ai form a linear recurrence. �

Remark 7. Note that using Proposition 6, the equivalence between our Theorem 5 and the original is
immediate.

We have one more way of characterizing linear recurrences. Given a linear recurrence (an) of dimension
k, we can form a k × k matrix M such that Mi,1 = ci for all i, Mi,i−1 = 1 for 2 ≤ i ≤ k and everything else
is 0. Let

u =
[
ak−1 ak−2 . . . a0

]
v =

[
1 0 0 . . . 0

]
Then we get for n ≥ k, an = uMn+1−kv. This is clear by induction.

We now review some basic facts about the p-adic valuation. Fix some prime p. For any a
b ∈ Q with

a, b coprime, we get a unique integer k such that pk = a′

b′ and p - a′b′. Let vp(a
b ) = k. Call this the p-adic

valuation. There are a few properties that fall immediately out of this definition.

1. For all α, α′ ∈ Q, vp(αα′) = vp(α) + vp(α′)

2. For all α, α′ ∈ Q, vp(α+ α′) ≥ vp(α) + vp(α′)

3. For all n ∈ N, vp(n!) ≤ n
p−1

Of these, only the last requires some explanation. It is easy to see that vp(n!) =
∑∞

i=1[ n
pi ], where [α]

denots the greatest integer function. Thus we get that vp(n!) ≤
∑∞

i=1
n
pi = n

p−1 . Given a polynomial

f(x) = αnx
n + ...+ α0 ∈ Q[x], we define

vip(x) := min
j≥i

(vp(αj))

It is clear by the properties above that v0p(f) ≤ vp(m) for all m ∈ N. We are now ready to start proving
Theorem 5.
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3 Proof of Theorem 5

The general idea involves constructing a special sequence associated to our sequence and then to consider
reduction (mod p) for some fixed prime p. Before we do this, we need a few lemmata and propositions.

Lemma 8. Let m ∈ N and f(x) ∈ Q[x]. Let g(x) = (x−m)f(x). Then vip(f) ≥ vi+1
p (g).

Proof. Let f = anx
n + ...+ a0. Let g = bn+1x

n+1 + bnx
n + ...+ b0. Note that b0 = −ma0. For i > 0, we get

that bi = ai−1 −mai. Rearranging, we get aj = bj+1 + maj+1. We can now iterate this process, replacing
aj+1 = bj+2 +maj+2. Continuing this, we get

aj = bj+1 +mbj+2 +m2bj+3 + ...+mn−jbn+1

Apply the properties of vp mentioned above and we win. �

Now that we have the lemma, we are able to prove a result reminiscent of our desired one.

Proposition 9. Let (dn) be a sequence in Z and let

bn =

n∑
i=0

(
n

i

)
pidi

Then if there exists some bn 6= 0, then Sb is finite.

Proof. Suppose Sb is infinite. We will show that then Sb is all of N. Let Rn(x) =
∑n

i=0

(
x
i

)
dip

i. It is clear
that if m ≤ n, then Rn(m) = Rm(m) = bm. Let Rn(x) = αnx

n + ... + α0. Then each αi is a Z-linear

combination of dj
pj

j! . But using the properties of vp mentioned above, we immediatley get the chain of
inequalities

vp(
djp

j

j!
) ≥ j − vp(j!) ≥ j − j

p− 1
= j

p− 2

p− 1

If j ≥ i, then it follows that vjp(Rn) ≥ ip−2p−1 .

We now fix r, s ∈ N. Let i ∈ N such that ip−2p−1 > s. Because Sb is infinite, for all i, there exist

m1, ...,mi ∈ Sb the first i elements. Let N > max(r,mi). Then we get that RN (mj) = bmj
= 0 for all

1 ≤ j ≤ i so we can factor RN = (x−m1)...(x−mi)f for some f ∈ Q[x]. Then we get that

vp(br) = vp(RN (r)) ≥ vp(f(r)) ≥ v0p(f)

. By Lemma 8,

v0p(f) ≥ vip(RN ) ≥ ip− 2

p− 1
≥ s

Thus, we have shown that vp(br) ≥ s for all r, s ∈ N. Embedding Z ↪→ Zp immediately yields that br = 0.
Because r was arbitrary, thiss holds for all r and we get that br = 0 for all r ∈ N and we are done. �

We need one more proposition and we will get Theorem 5 as a corollary.

Proposition 10. Let (an) be a linear recurrence of dimension k with integral coefficients such that a =
uMn−kv. If p is a prime such that p - detM , then there exist N, r, j1, ..., jm ∈ N with m possibly 0 and
r||GLk(Fp)|, such that

Sa ∩ {n ∈ N|n > N} =

m⋃
i=1

{ji + rq|q ∈ N}

Proof. We let a bar denote passage from Z → Z/pZ by the canonical projection. Recall that detM is
a polynomial in the elements of M and quotienting is a morphism so detM = detM 6= 0 ∈ Fp because
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p - detM . Let G be the general linear group of Fk
p. By Lagrange’s theorem, there exists an N 3 r||GLk(Fp)|

such that M
r

= I. Pulling back to working over Z, we get that there exists a matrix M ′ such that

Mr = I + pM ′

Fix j ∈ {0, 1, ..., r − 1} and let dn = uM jM ′nv. We get that

arn+j = uMrn+jv = uM j(I + pM ′)nv =

n∑
i=0

pidi

(
n

i

)
By Proposition 9, {n ∈ N|arn+j = 0} is either finite or all of N Thus for n > max(r − 1, k), an = 0 if and
only if an+r = 0 as desired. �

We can now prove Theorem 5 as a trivial consequence of the above theorem.

Proof of Theorem 5 assuming integral coefficients. Let (an) be a linear recurrence. If we can find a prime p
such that p - detM then we can apply Proposition 10, and Sa ∩ {n ∈ N|n > N} =

⋃m
i=1{ji + rq|q ∈ N} for

some N ∈ N. But clearly Sa ∩ {1, ..., N} is finite so Theorem 5 follows trivially. It follows that it suffices to
show that detM is nonzero. But it is trivial to see by induction that |detM | = |ck| 6= 0 so we are done. �

There are several remarks to be made. First, note that the above proof effectively puts a bound on
the size of the period, r. By taking the minimal prime p such that p - ck, we get that r ≤ |GLk(Fp)| =
(pk − 1)(pk − p)...(pk − pk−1). Bounding r also effectively bounds the size of the finite set because if r is
big then N depends entirely on r. These are, of course, not very strict bounds and it is an area of active
research to attempt better ones.

As stated in the beginning, the theorem holds in much greater generality, in particular in fields of
characteristic 0. A natural question to ask is to what extent does the theorem hold in positive characteristic.
To see this, we use an example from [Der05]. Consider the sequence over Fp(x) defined by

an = (2x+ 2)an−1 − (x2 + 3x+ 1)an−2 + (x2 + x)an−3

with a0 = −1, a1 = 0, and a2 = 2x2. The astute observer will note that this sequence is just given by

an = (x+ 1)n − xn − 1

But by Frobenius, then, apk = 0 for all k ∈ N. This is clearly not a finite union of arithmetic progressions.
There is, however, an extension of Theorem 5 that holds in arbitrary characteristic that says that the above
is essentially the only way that our theorem can fail. Unfortunately, this lies outside of the scope of this
paper and the interested reader is referred to [Der05].
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