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Typically, .𝗏𝖼(ℱ) ≪ 𝖫𝖣𝗂𝗆(ℱ) = ∞

Online learning is computationally hard even under nice oracle assumptions [HK’16].
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Pros:
Intuitive notion of learning.
Learning reduces to 
optimization:  

Learning = Data + Opt

Cons:
Strong modeling assumption.

Not robust.

Pros:
Minimal assumptions needed.

Models robustness.

Cons:
Statistical hardness.

Computational hardness: 
Learning ≠ Data + Opt
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∞

≤ σ−1

Motivation from smoothed analysis of algorithms [ST’02].

Forces data to be anti-concentrated.

Example:  is uniform on a discrete .μ 𝒳

Example:  is Lebesgue on  and .μ ℝd X = X + noise
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If gray region has length , w.p , new point 

not in gray region!
ε ≥ 1 − ε/σ
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σ )
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Algo works by choosing center of John Ellipsoid of feasible set.

Ensures constant fraction of wrong functions removed with each mistake.

Analysis uses duality between  and .ℱ 𝒳
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Theorem [BS’22]: If  is linear thresholds, 

and data are realizable and smooth w.r.t. Lebesgue, then an efficient 
algorithm achieves 

. 

ℱ = {x ↦ sign (⟨θ, x⟩) : ∥θ∥ = 1}

𝔼 [ErrT] ≲
d ⋅ log ( T

σ )
T

Pros:
End-to-end efficient algo.

Fast ( ) rate in error.1/T

Cons:
Requires realizable data.

Only thresholds, Lebesgue.
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Statistical Learning
1. We get  data points  such that  and .T (Xt, Yt) Xt

iid∼ μ Yt = f ⋆(Xt) + ηt

2. We have access to a model class .ℱ : 𝒳 → 𝒴

Goal: Return  with small test loss .̂f ∈ ℱ 𝔼 [ 1
T

T

∑
s=1

ℓ( ̂f(X′ s), f ⋆(X′ s))]
Empirical Risk Minimization

̂f ∈ argmin
f∈ℱ

LT( f ) LT( f ) = 1
T

T

∑
t=1

ℓ( f(Xt), Yt)
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ERM Performance
Theorem [BRS’24]: If data are -smooth w.r.t.  and  is ERM, then 

.

σ μ ft

𝔼 [ErrT] ≲ log(T/σ)
σ ⋅ T

+ 𝗏𝖼(ℱ) ⋅ log(T/σ)
σ ⋅ T

Theorem [BRS’24]: For all  there is  with  and a realizable 
adversary such any algorithm (if  is unknown)  must pay 

.

d ℱ 𝗏𝖼(ℱ) ≤ d
μ

𝔼 [ErrT] ≳ d
σ1/d ⋅ T



ERM Performance

Smoothed Online Learning 

.
𝗏𝖼(ℱ)

σ1/𝗏𝖼(ℱ) ⋅ T
≲ 𝔼 [ErrT] ≲ max ( 𝗏𝖼(ℱ) ⋅ log(T/σ)

σ ⋅ T
, log(T/σ)

σ ⋅ T )
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ERM Performance

Smoothed Online Learning 

.
𝗏𝖼(ℱ)

σ1/𝗏𝖼(ℱ) ⋅ T
≲ 𝔼 [ErrT] ≲ max ( 𝗏𝖼(ℱ) ⋅ log(T/σ)

σ ⋅ T
, log(T/σ)

σ ⋅ T )

Statistical Learning 

.𝔼 [ErrT] ≍ 𝗏𝖼(ℱ)
T
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Smoothness Bounds Surprises
Lemma [BRS’24]: Let  be -smooth.  Then for  and , 
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Theorem [M’23]: The Wills functional is monotone: 
.WT(ℱ) ≤ WT+1(ℱ)

Definition: .log WT(ℱ) = log 𝔼 [exp (sup
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∑
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Theorem [BRS’24]: If data smooth, then 
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Theorem [BRS’24]: For all  there is  with  and a realizable 
adversary such any algorithm (if  is unknown)  must pay 

.

d ℱ 𝗏𝖼(ℱ) ≤ d
μ

𝔼 [ErrT] ≳ d
σ1/d ⋅ T

Theorem [BRS’24]: If data are -smooth w.r.t.  and  is ERM, then 
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σ μ ft

𝔼 [ErrT] ≲ log(T/σ)
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+ 𝗏𝖼(ℱ) ⋅ log(T/σ)
σ ⋅ T
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Smoothness Bounds Surprises
Lemma [BRS’24]: Let  be -smooth.  Then for  and , 

.

p1, …, pT σ ε > 0 Z ∈ 𝒳

{t ∈ [T] : pt(Z) ≥ 2 log(T)
ε

⋅ 1
t ( 1

σ
+

t−1

∑
s=1

ps(Z))} ≤ ε ⋅ T

μ = Unif(𝒳)
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ERM Performance

Smoothed Online Learning 

.
𝗏𝖼(ℱ)

σ1/𝗏𝖼(ℱ) ⋅ T
≲ 𝔼 [ErrT] ≲ max ( 𝗏𝖼(ℱ) ⋅ log(T/σ)

σ ⋅ T
, log(T/σ)

σ ⋅ T )

Statistical Learning 

.𝔼 [ErrT] ≍ 𝗏𝖼(ℱ) ⋅ log(T)
T



Key Takeaways

Smoothed data bridges efficiency of statistical 
learning and robustness of online learning.

Technical tools:
(i) Surprise Lemma (compactness)
(ii) Coupling (rejection sampling)
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Coupling Lemma and Rejection Sampling

Coupling Lemma “Algorithm”
Sample {Zi,k} ∼ μ

 be the th distribution (depends on  )𝒟i i {Xj}j<i

Scan through  and set   with prob {Zi,k}k Xi = Zi,k σ𝒟(Zi,k)/μ(Zi,k)
If all the tosses fail sample from 𝒟i

Key idea: (Approximate) Rejection Sampling

Warning: any learner cannot run this algorithm, since we don’t know  
We only have access to the “implicit” structure

𝒟i
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Approximate Rejection Sampling Perspective

• Connections to channel coding [BP’23]


• Beyond uniformly bounded ratios: Extensions to generalizations of 
smoothness 


• Applications: sampling from language models [HBF+’24, HBL+’25]

Lemma [HRS’21, BDGR’22, BP’23]: For any pair of distributions  as long as 
,  such that for , we have 

μ1, μ2
n ≥ F(μ1, μ2, ε) ∃i⋆ Z1, …, Zn ∼ μ2 dTV(Zi⋆, μ1) ≤ ε

Depends on “distance” between  and  μ1 μ2
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Bounding Bad Events by Coupling

Family of “bad” events  (corresponding to when algorithm or analysis fails)ℬ

Coupling tells us that roughly Pr
smooth

[Bad] ≲ Pr
IID

[Bad]



Coupling and Monotonicity



Coupling and Monotonicity

When is coupling useful?



Coupling and Monotonicity

When is coupling useful?
Monotonicity (in terms of sample)



Coupling and Monotonicity

When is coupling useful?
Monotonicity (in terms of sample)

F : Datasets → ℝ



Coupling and Monotonicity

When is coupling useful?
Monotonicity (in terms of sample)

F : Datasets → ℝ  {Xi} ⊂ {Zi} ⟹ 𝔼F({Xi}) ≤ 𝔼F({Zi})



Coupling and Monotonicity

When is coupling useful?
Monotonicity (in terms of sample)

F : Datasets → ℝ  {Xi} ⊂ {Zi} ⟹ 𝔼F({Xi}) ≤ 𝔼F({Zi})
E.g. sums of positive functions, Rademacher complexity
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(De)coupling Inequality

 adaptive smooth sequence and  be a family of positive functions
X1, …, XT ℬ

𝔼 [ sup
b∈ℬ ∑

t
b(Xt)] ≤ 𝔼Z1,…,ZTk∼μ [ sup

b∈ℬ ∑
t

b(Zt)]
Compare to naive change of measure:

+T2e−σk

𝔼 [ sup
b∈ℬ ∑

t
b(Xt)] ≤ σ−T𝔼Z1,…,ZT∼μ [ sup

b∈ℬ ∑
t

b(Zt)]
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Warning: Objectives that we care about are typically not directly monotone  
E.g. Generalization, Regret, Discrepancy  

Fortunately, typically, we reason about these objectives using monotone proxies  
E.g. Rademacher complexity, Potential functions, Hereditary discrepancy 

 
We still need to be careful about what proxy we use!!

See for [HRS’21] a detailed discussion
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Remainder of Talk

• Does knowledge of  help?μ

• What if there were label noise?

• Computational efficiency?



Smoothed Online Learning
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Smoothed Online Learning
1. We get  data points  smooth w.r.t  and  generated arbitrarily.T Xt μ Yt

2. We have access to a model class .ℱ : 𝒳 → 𝒴

Goal: For each , return   with small regret 

.

t ft ∈ ℱ

𝔼 [RegT] = 1
T

⋅ 𝔼 [
T

∑
t=1

ℓ( ft(Xt), Yt)− inf
f∈ℱ

T

∑
t=1

ℓ( f(Xt), Yt)]
IID  are still easy to learn with arbitrary labels  

Bounded in terms of the VC dimension
X′ s
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Statistical Bound with Known Base Measure
Theorem [HRS’21]: For known base measure smoothed online learning we 

have 

Agnostic:   

Realizable: 

𝔼[RegT] ≈ 𝗏𝖼(ℱ) ⋅ log(T/σ)
T

𝔼[RegT] ≈ 𝗏𝖼(ℱ) ⋅ log(T/σ)
T
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Achieving the Statistical Bound: Agnostic Case

Theorem [D’66,H’87]: VC class  implies d log |ℱ′ | ≲ d log(1/ϵ)

Algorithm: Construct  (can be done using samples from ).  
Play experts on 

ℱ′ μ
ℱ′ 

ℱ

ℱ′ 
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 . 

ℱ′ 
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T

≲ d log(1/ϵ)
T
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• How does this relate to regret with respect to ?ℱ
• We need to bound  

                                  

 
 Smoothness  any fixed , 

𝔼Xi∼𝒟i [sup
f∈ℱ

inf
f′ ∈ℱ′ 

T

∑
i=1

𝕀 [f(Xi) ≠ f′ (Xi)]]
⟹ f 𝔼 [𝕀 [f(Xi) ≠ f′ (Xi)]] ≤ ϵσ−1

Theorem [V’87,HLW’87]: Regret with respect to best expert in  

 . 

ℱ′ 

log |ℱ′ |
T

≲ d log(1/ϵ)
T
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• Main challenge: For adaptive  depends on the previous draws,  are not 
independent  can’t apply VC theorem/symmetrization

𝒟i Xj
⟹

• In particular, need to bound the following empirical process  
Let  be a VC class (of positive functions) such that  has  
and let  be generated from an adaptive sequence of smooth 
distributions  

                                                

ℬ b ∈ ℬ 𝔼μb ≤ ϵ
X1, …, XT

𝔼 [ sup
b∈ℬ ∑

i
b(Xi)]

Achieving the Statistical Bound: Agnostic Case



(De)coupling Inequality

 adaptive smooth sequence and  be a family of positive functions
X1, …, XT ℬ

𝔼 [ sup
b∈ℬ ∑

t
b(Xt)] ≤ 𝔼Z1,…,ZTk∼μ [ sup

b∈ℬ ∑
t

b(Zt)]
(De)coupling inequality

+T2e−σk
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• Apply coupling lemma,  
                                    𝔼 sup

b∈ℬ ∑
i

b(Xi) ≲ 𝔼 sup
b∈ℬ ∑

i,j
b(Zi,j)

•  independent  apply VC theorem/symmetrization Zi,j ⟹
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Completing the Proof

• VC theorem implies 
                                 

 𝔼xi∼𝒟i [sup
f∈ℱ

inf
f′ ∈ℱ′ 

T

∑
i=1

𝕀 [f(xt) ≠ f′ (xt)]] ≤ ϵσ−1T + Tϵσ−1 ⋅ 𝗏𝖼(ℱ)

• Recall: Regret with respect to best expert in  :  ℱ′ d log(1/ϵ)/T

• Setting  gives regret bound ϵ = σT−1

Naive change of measure on the sequence would have paid σ−T

Bernstein 
 

Important to get 
log dependence  
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Main Theorem

• This can be extended to non-parametric classes (essentially whenever 
covering numbers are bounded) [BDGR’22, HHSY’22]

• Handling the nonparametric case needs different ideas (Distributional 
Sequential Rademacher complexity)

• Whether a “natural” covering-based “algorithm” exists is an interesting open 
question

Theorem [HRS’21]: Known base measure smoothed online learning we have 

                                            .𝔼[RegT] ≈ 𝗏𝖼(ℱ) ⋅ log(T/σ)
T
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Algorithm for Unknown Base Measure
• When  is not known, we can’t construct a net for !


• The only “clue” we have about  is from the realized samples.  
But not enough samples to “learn” . In fact, not necessarily identifiable


• Surprise Lemma to the rescue

μ ℱ
μ

μ

Let .pt = 1
t

t

∑
s=1

ps

Then,  for most .pt ≲ log(T)
σ ⋅ t

+ log(T) ⋅ pt−1 t



Algorithm for Unknown Base Measure
• When  is not known, we can’t construct a net for !


• The only “clue” we have about  is from the realized samples.  
But not enough samples to “learn” . In fact, not necessarily identifiable


• Surprise Lemma to the rescue


• Instead of likelihood ratio, keep track of number of times a net on the 
historical data is not a good representation of  for future data


• With a clever epoching idea [B’25] gets  rate. 

μ ℱ
μ

μ

ℱ

dσ−1T
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Efficiency
• So far, we have not talked too much about efficiency

• What is the right notion of efficiency here? 

• We want to reason about arbitrary concept classes

• Oracle Efficiency: Assume access to optimization “oracle” for class

Deep learning SAT Solvers Integer Programming
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Empirical Risk Minimization

Oracle Efficiency

̂f ∈ argmin
f∈ℱ

LT( f ) LT( f ) = 1
T

T

∑
t=1

ℓ( f(Xt), Yt)

Can we efficiently reduce online learning to statistical learning?

With smoothness, Oracle efficiency is achievable
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•  is known and access to ERM oracleμ

• Algorithmic framework: Follow-the-perturbed leader [KV’05]

• Historical data: St = {(Xi, Yi)}i≤t

• Given  make a prediction for Xt+1 Yt+1

Historical 
Data 
St−1

̂ft+1



Oracle Efficiency with Known Measure
Algorithm: Sample . Label at random


Run ERM on Historical data:   Hallucinated data 

{Zi} ∼ μ

St = {(Xi, Yi)}i≤t ∪ {Zi, Ỹi}
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Analysis: Stability
Algorithm: Sample . Label at random


Run ERM on Historical data:   Hallucinated data 

{Zi} ∼ μ

St = {(Xi, Yi)}i≤t ∪ {Zi, Ỹi}

In typical analysis of FTPL-type algorithms, we look at stability  

𝔼Xt∼𝒟t [𝔼 ̂ft∼ALGt
ℓ( ̂ft(Xt), Yt) − 𝔼 ̂ft+1∼ALGt+1

ℓ( ̂ft+1(Xt), Yt)]
 in “training data” (Xt, Yt)

Observation: connection to Rademacher/Gaussian processes is due to the Hallucinated 
data having random signs
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Theorem 

𝔼Xt∼𝒟t [𝔼 ̂ft∼ALGt
ℓ( ̂ft(Xt), Yt) − 𝔼 ̂ft+1∼ALGt+1

ℓ( ̂ft+1(Xt), Yt)] ≤

+𝔼 ̂ft+1∼ALGt+1Xt,X′ t∼𝒟t [ℓ( ̂ft+1(Xt), Yt) − ℓ( ̂ft+1(X′ t), Y′ t)]
TV(ALGt, 𝔼zt∼𝒟t

[ALGt+1])

Analysis: Stability Decomposition

Both steps crucially use smoothness and coupling arguments
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Oracle Efficiency with Known Measure

Coupling lemma as an algorithmic method to generate synthetic data: Accounts for 
uncertainty  “worry” about bad events under IID

Algorithm: Sample . Label at random


Run ERM on Historical data:   Hallucinated data 

{Zi} ∼ μ

St = {(Xi, Yi)}i≤t ∪ {Zi, Ỹi}

Key technical contribution: Technique for algorithmic generalization for data from 
“unseen” distributions

Coupling relates stability of the algorithm to that of Rademacher/Gaussian processes
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Oracle Efficiency with Known Measure

̂ft+1

Theorem [HHSY’21,BDGR’21]: Known base measure oracle efficient smoothed 
online learning we have 

                                            𝔼[RegT] ≲ 𝗏𝖼(ℱ)
σT

Rate can be improved to  for binary classification using “Poissonization” [HHSY’21]σ−1/4

Historical 
Data 

  
Hallucinated 

Data

St−1 ∪
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Theorem [HHSY’21,BDGR’21]: Any proper algorithm that has  

regret in smoothed online learning needs  oracle calls.                                             

o ( Td σ)
d/σ



Computational Lower Bounds

Note that the statistical algorithm requires exponential in  timed
Can we do better than running experts on a (large) net? Or are there matching 

lower bounds

Theorem [HHSY’21,BDGR’21]: Any proper algorithm that has  

regret in smoothed online learning needs  oracle calls.                                             

o ( Td σ)
d/σ



Bounds for Efficient Smoothed Online Learning

Known Unknown

Realizable 

(Efficiency) 

Agnostic 

(Efficient)
???

T−1d log(T/σ)

T−1d log(T/σ)

T−1dσ−1

T−1dσ−1T−1dσ−1

T−1dσ−1

T−1dσ−1



• Statistical and Computational Equivalence between Statistical Learning and 
Smoothed Online Learning [HRS’21, HHSY’22, BDGR’22, BRS’24, BP’23]


• Private Learning with public data [HRS’20, BBDSW’24, BS’25]


• Online Discrepancy minimization [HRS’21]


• Data-driven Algorithm design [HRS’21]


• Bandits, RL, Robotics [BST’22, BS’22, BSR’24, BDGR’22]


• Equilibria Computation in General Games [DGHS’23]

Other Applications



Key Takeaways
Smoothed data bridges efficiency of statistical 

learning and robustness of online learning.



Key Takeaways
Smoothed data bridges efficiency of statistical 

learning and robustness of online learning.

Technical tools:



Key Takeaways
Smoothed data bridges efficiency of statistical 

learning and robustness of online learning.

Technical tools:

(i) Surprise Lemma (compactness)



Key Takeaways
Smoothed data bridges efficiency of statistical 

learning and robustness of online learning.

Technical tools:

(i) Surprise Lemma (compactness)
(ii) Coupling (rejection sampling)
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Known Unknown

Realizable 

(Efficiency) 

Agnostic 

(Efficient)
???

T−1d log(T/σ)

T−1d log(T/σ)

T−1dσ−1

T−1dσ−1T−1dσ−1

T−1dσ−1

T−1dσ−1

Open Problems

How 
fundamental 
is the worse 
dependence 

on ?σ
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Broader Open Problems

EpistemicAlgorithmic

What is a good oracle model 
for modern ML?

What is the best way to capture 
the relation of the past and the 

future?

E.g. Oracles for sampling, 
LLMs

E.g. Abstention, relaxed 
benchmarks



Smoothed data

Statistical Learning Online Learning

Thank you 


