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Goal: Return f € F with small test loss [? S:ZI C(f(X)),17( ))] :

Is the iIndependence assumption too strong?
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Theorem [ ]: If £ is Lipschitz one can achieve
GXNF [LDim(F
= [EI‘I‘T] < # < %

We always have vc(F ) < LDIm(%).

Typically, ve(#) < LDIM(#) = .

Online learning is computationally hard even under nice oracle assumptions |
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Intuitive notion of learning. Minimal assumptions needed.
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optimization:
Learning = Data + Opt

Cons: Cons:
Strong modeling assumption. Statistical hardness.
Not robust. Computational hardness:
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Definition: For measures p, u € A(X), p is o-smooth with respect to y if

Motivation from smoothed analysis of algorithms [s7°02].

Forces data to be anti-concentrated.

Example: i is uniform on a discrete 2.

Example: 1 is Lebesgue on | 4 and X = X + noise.
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1. We get T data points X, smooth w.rt g and Y, = f* (X)) + 7,
2. We have access to a F . A =Y.
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Theorem [Bs22]: If F = {x — s1gn ((0, x)) 8] = 1} is linear thresholds,

and data are realizable and smooth w.r.t. Lebesgue, then an efficient
algorithm achieves
T
d - log (;)

I

- [ErrT] <

Algo works by choosing center of John Ellipsoid of feasible set.

Ensures constant fraction of wrong functions removed with each mistake.

Analysis uses duality between & and X .
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Theorem | ]: If £ is square loss and f is an ERM, then

- [ErrT] <

ve(F)
o

d
Statistical Learning: [ [ErrT] < =

Smoothed Online Learning:

d - log(T/o)

- [ErrT] <

I
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Why is Smoothness Helpful?

Theorem [Bs22]: If F = {x — s1gn ((0, x)) 8] = 1} is linear thresholds,

and data are realizable and smooth w.r.t. Lebesgue, then an efficient
algorithm achieves
T
d - log (;)

I

- [ErrT] <

Pros: Cons:

End-to-end efficient algo. Requires realizable data.

Fast (1/7) rate in error. Only thresholds, Lebesgue.
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Statistical Learning
1. We get T data points (X, Y,) such that X, ~ pand Y, = f*(X) + 1,

2. We have access to amodel class # : & — ¥.

. l &
Goal: Return f € # with small test loss [E [? 2 C(f(X)), f*(be))] :
s=1

Empirical Risk Minimization

A I
f € argmin L(f) LAf) = % Z £(f(X),Y)
=1

fex
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Online Empirical Risk Minimization

1. We get T data points X, smooth w.r.t z and Y, = f*(X)) x

2. We have access to amodel class # : & — ¥.

3. For each 7 let f, € argmin L,_(f) with L,_,(f) = —2 £(f(X),Y).

fex

Goal: For each 7, return f, € & with small error

1 T
— [Z f(ﬁ(xg,f*(Xt))] .
=1

- [ErrT] = = -
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ERM Performance

Theorem [Brs24]: If data are o-smooth w.r.t. 4 and f, is ERM, then

1 ve(F) - log(T/ o)
n < \ [ A7 e T
|Erry| S 7 .

ve(F)
Compare to lID, where I [ErrT] < o




ERM Performance

Theorem [Brs24]: If data are 6-smooth w.r.t. 1 and f, is ERM, then

(o] < 1080 | [V ToxTTe)
e~ o-1 o-1

Theorem [Brs24]: For all d there is # with vc(#) < d and a realizable

adversary such any algorithm (if iz is unknown) must pay

- [ErrT] Z\/ 1/4611 .
c'd. T




ERM Performance

Smoothed Online Learning
ve(F)
o i

S | [ErrT] <

%

ve(F)

0 .
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ERM Performance

Smoothed Online Learning
ve(F)
o i

S | [ErrT] <

%

Statistical Learning

- [ErrT] =

ve(F)

0 .

ve(F)
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fes

If data IID, for fixed f € F, E |L,_,(f)| = E[£(F(X).f*(X))].

—1
f data IID, sup% 2 =P =2-(f =YX | S

feF

omp(.#)
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For each 7 let f, € argmin L,_,(f) with L,_,(f) = —— Z £(FX), f*(X.)).
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If data IID, for fixed f €

1—1
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ERM with Realizable, IID Data

For each 7 let f, € argmin L,_,(f) with L,_,(f) = —— Z £(FX), f*(X.)).

fes

If data IID, for fixed f € F, E |L,_,(f)| = E[£(F(X).f*(X))].

comp(F)

1—1
f data IID, [sup% 2 =) =2-(f~f *)Q(XS)] S

S s=1

| « comp(F) - log(T)
- | = N £XV)\2
[T gf (J(Xp) — (X)) ] S B E—
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comp(&)
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Can we Extend to Smoothed Data?

Key facts used:

If data smooth, for fixed f € F, E |L,_,()| # E[Z(FX).,f*(X))].

fi € argminL,_,(f) Ly(f) = —Z £(AX) (X))

fes#

1 T
= [El‘l‘T] = Ic [? tzzl (f(X) _f*(Xt))zl



Can we Extend to Smoothed Data?

Key facts used:

If data smooth, for fixed f € F, E |L,_,()| # E[Z(FX).,f*(X))].

~ —1
f,€argminL,_(f) L_(f) =
[

fes#

— 1

— [EI’I‘ T] — ft(Xt) / *(Xt)
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Lemma [Brs24]: Let py, ..., p; be o-smooth. Thenfore > 0Oand Z € X,
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Lemma [Brs24]: Let py, ..., pr be o-smooth. Thenfore > Qand Z € X,

| 2l0g(T) 1 (1 T
{tE [T'] : p(Z) > . ) (G_I_SzlpS(Z))}

Corollary [Brs24]: Let X, ..., X; be 6-smooth and let f, be predictable. Then,

<e-T.

— I \ * 2 lOg(T) 1 — - 1 < / * (V/\\2
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1 §=
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fi € argminL,_(f) L) = —Z £RX).f*(X)

fex -

1 T
— [EI’I‘T] — 1 [? Z} (]L;(Xt) _f*(Xt))zl

Corollary [Brs24]: Let X, ..., X, be 6-smooth and let f, be predictable. Then,

=1

) ] <« " ) log(T) 1 - * 2
[;Z,(ﬁ(xo—f <Xt>>] <22 +\0.T- [2 Z(ﬁ(X) ~f <X>>]
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Definition: For X, ..., X, a tangent sequence is some X, ..., X such that

forallr € [T,
X, X < p, | history.

Corollary [Brs24]: Let X, ..., X; be 6-smooth and let f, be predictable. Then,
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Can we Extend to Smoothed Data?

Key facts used:

If data smooth, for fixed f €

If data smooth,

gEf

F, EIC(fIX),f*(X))]

= | sup— 2g<X'>2 28X )| S

=L (D)

comp(&) n




If we Controlled Generalization Error

Corollary [Brs24]: Let X, ..., X; be 6-smooth and let f, be predictable. Then,

< comp(&) |

If £ [ sup— Zg(X’)2 2 - g(X)’
gE?
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Corollary [Brs24]: Let X, ..., X; be 6-smooth and let f, be predictable. Then,
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If we Controlled Generalization Error

Corollary [BRs24]:
ry [Brs24]: Let X, ..., X be o-smooth and let f, be predictable. Then

1 I
3= Z} (X —f*(X»)zl

1 I
‘ [7 > () —f*(Xt»z] g2e) | jeomp?) oet)
- c-1 c-1



Can we Extend to Smoothed Data?

Key facts used:

If data smooth, for fixed f € F, E |L,_,(f)| # E[Z(f(X)),/*(X)].

comp(&) n

If data smooth, £ | sup — 2 g(X’)2 : g(XS)2 S
gef'?
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Wills Functional

T 2
Definition: log W, (#) = - [ sup Z ¢ - f(X) — f()it) ] .
JE€F =1

T
Definition: Gaussian complexity & (&) = [sup Z E, - f(Xt)] .
fes# =1

Theorem [v23]: If £ is square loss and f is an ERM, then
log WA(F) < ve(F)

T ~ T
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Wills Functional

T 2
Definition: log W, (&) = [ sup Z E - f(X) — f()ét) ] .
JE€F 1=1

Theorem [\v'23]: The Wills functional is monotone:
WAF) < Wr ((F).

Theorem [Brs24]: If data smooth, then

st 32| 5214

gE?




ERM Performance

Theorem [Brs24]: If data are o-smooth w.r.t. 4 and f, is ERM, then

log(T/ |
g(T/o) N

o1 o-1 ‘log L [WTIOg(T)/G(‘G’Z)] -

- [ErrT] S

NN/

Theorem [Brs'24]: For all d there is # with vc(#) < d and a realizable

adversary such any algorithm (if iz is unknown) must pay
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Theorem [Brs24]: If data are o-smooth w.r.t. 4 and f, is ERM, then

(o] < 1080 | [V ToxTTe)
o~ o-1 o-1

Theorem [Brs'24]: For all d there is # with vc(#) < d and a realizable

adversary such any algorithm (if iz is unknown) must pay
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Smoothed Online Learning
ve(F ve(F
(F) <E [Erry] < (F)
9] i oc-1

Statistical Learning
ve(F) - log(T)
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Smoothed data bridges efficiency of statistical
learning and robustness of online learning.

Technical tools:
(i) Surprise Lemma (compactness)

(i) Coupling (rejection sampling)
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Extracting Stochasticity

Adaptive smooth sequences can be realized as subsequences of
(slightly) longer |ID sequences
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Coupling Lemma and Rejection Sampling

Key idea: (Approximate) Rejection Sampling

Coupling Lemma “Algorithm”

Sample {Z; ; } ~

2 be the ith distribution (depends on {X;}_;)

Scan through {Z; , }, and set X; = Z;, with prob c2(Z; ;)/u(Z; ;)

If all the tosses fail sample from .

Warning: any learner cannot run this algorithm, since we don’t know <,
We only have access to the “implicit” structure



Coupling Lemma Visualized




Coupling Lemma Visualized




Coupling Lemma Visualized




Coupling Lemma Visualized




Coupling Lemma Visualized




Coupling Lemma Visualized



Coupling Lemma Visualized




Coupling Lemma Visualized




Approximate Rejection Sampling Perspective



Approximate Rejection Sampling Perspective

Lemma [HRs21, BDGR’22, BP’23]: For any pair of distributions /¢, /t, as long as

n> F(u, ), €), Ji* such thatforZ,, ..., Z ~ i, we have d(Z, py) < €



Approximate Rejection Sampling Perspective

Lemma [HRs21, BDGR’22, BP’23]: For any pair of distributions /¢, /t, as long as

n > F(uy, py, €), i* suchthatforZ,, ..., Z, ~ u,, we have dpy(Z;x, ji;) < €

= Depends on “distance” between yx; and u,




Approximate Rejection Sampling Perspective

Lemma [HRs21, BDGR’22, BP’23]: For any pair of distributions /¢, /t, as long as
n > F(uy, py, €), i* suchthatforZ,, ..., Z, ~ u,, we have dpy(Z;x, ji;) < €

B Depends on “distance” between y; and u,

* Connections to channel coding [BF23]

 Beyond uniformly bounded ratios: Extensions to generalizations of
smoothness

* Applications: sampling from language models [HBF+24, HBL+25]



Extracting Stochasticity via Coupling

Lemma [HRrs'21, BDGR22]: For all ¢, there is a coupling between X, and

Lygs sy %1 4 such that w.p. at least 1 — e ™%, it holds that

X, €{Z |, .. Zyy}-
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Bounding Bad Events by Coupling

Family of “bad” events & (corresponding to when algorithm or analysis fails)

Coupling tells us that roughly Pr [Bad| < Pr[Bad]
smooth I1D
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Coupling and Monotonicity

When is coupling useful?

Monotonicity (in terms of sample)

F : Datasets — | X} C {4} —

“F({X;}) <

—F(14})

E.g. sums of positive functions, Rademacher complexity
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X, ..., Xy adaptive smooth sequence and &% be a family of positive functions

= [sup ) b(X)| <E, oo | sup ) BZ)| 1l
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(De)coupling inequality



X, ..., Xy adaptive smooth sequence and &% be a family of positive functions

= | sup Z b(X)

beRB /

Compare to naive change of measure:

<

(De)coupling Inequality

|

sup Z b(X)

beARB ¢

beRB /

oo | SUP D B(Z)

Zl” . .,ZTNIM

+ T2~ 0k

beARB

sup Z b(Z,)

[

|
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What Objectives are Monotone?

Warning: Objectives that we care about are typically not directly monotone
E.g. Generalization, Regret, Discrepancy

Fortunately, typically, we reason about these objectives using monotone proxies
E.g. Rademacher complexity, Potential functions, Hereditary discrepancy

We still need to be careful about what proxy we use!!

See for [HRs21] a detailed discussion
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Wills Functional iIs Monotone

T 2
Definition: log W, (&%) = - [ sup Z ¢ - f(X) — f()it) ] .
J&€F 1=1

Theorem ['23]: The Wills functional is monotone:
WAF) < Wy (F).

gefﬁ 2 geyg ! s=1 j=1

X,)? 8(Z, )
log I lexp(sup Zcf g(X)—g( 5 )] < log b |exp[sup ZZ@; 8(Zs ;) — ”
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Story So Far

o Statistical Rates for ERM for well-specified

Theorem [Brs24]: If data are o-smooth w.r.t. 4 and f, is ERM, then
ve(F)
c-T

-|Err;| &

e Surprise Lemma

 Coupling Lemma
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Remainder of Talk

* Does knowledge of i help?
« What if there were label noise?

 Computational efficiency?
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Smoothed Online Learning

1. We get /' data points X, smooth w.r.t 4 and Y, generated arbitrarily.

2. We have access toamodelclass & : X — ¥.

Goal: For each 7, return f, € & with small regret

1

T
- [RegT] — ? s tzzl C(f(X,), Y))— flenj 2 c(f(X), Y)|-

IID X's are still easy to learn with arbitrary labels
Bounded in terms of the VC dimension
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Categories of Smoothed Online Learning

Label Noise Unknown Knowl;dge of
No noise —
Realizable “Known”
| | typically means
Arbitrary noise Realizable sample access
—> Agnhostic
Intermediate
models: Well-
specified, RCN,
Massart, ...

Agnostic
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Unknown
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Statistical Bound with Known Base Measure

Theorem [HRs21]: For known base measure smoothed online learning we

have
R c(F) - log(T/o

ve(F) - log(T/o)
T

Realizable: E|Reg | &
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Theorem [p's6,H'87]: VC class d implies log | #'| < dlog(1/¢)

Algorithm: Construct &’ (can be done using samples from ).
Play experts on &'
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Achieving the Statistical Bound: Agnostic Case

Theorem | ]: Regret with respect to best expert in #

log\f’/f"\ /dlog(l/e)

« How does this relate to regret with respect to #?

e We need to bound

X2, [supfmf 21X #f(X)]]
feF J€F

Smoothness = any fixed f, [E [I] [f(Xl-) -+ f’(Xi)]] <eo!
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« Main challenge: For adaptive &; depends on the previous draws, X] are not
independent = can’t apply VC theorem/symmetrization

* |n particular, need to bound the following empirical process
Let &5 be a VC class (of positive functions) such that b € 9B has E ﬂb <e€

and let X, ..., X;be generated from an adaptive sequence of smooth
distributions

= | sup Z b(X)

be9s

l



(De)coupling Inequality

X, ..., Xy adaptive smooth sequence and &% be a family of positive functions

= [sup ) b(X)| <E, oo | sup ) BZ)| 1l
beRB / beRB ¢

(De)coupling inequality
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Completing the Proof

. Let A be a VC class (of positive functions) such that b € 9B has [E ﬂb < € and
let X, ..., X7 be generated from an adaptive sequence of smooth distributions

= | sup Z b(X)

beRB

l

* Apply coupling lemma,

= sup » b(X) S Esup Y b(Z)

bedb . beRB i

l

o Zi,j independent = apply VC theorem/symmetrization
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Completing the Proof

Bernstein

e VC theorem implies

% |mportant to get
log dependence

= .~o. | sup inf Zu foo) #f)] | < €6 T+4/Tes™" |

feg feF 2

. Recall: Regret with respect to best expert in &' :/dlog(1/¢)/T

. Setting € = 6T~ gives regret bound

—T

Naive change of measure on the sequence would have paid o
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Main Theorem

Theorem [HRs'21]: Known base measure smoothed online learning we have
[ve(F) - log(T/ o)
_[RﬁgT] ~ f

* This can be extended to non-parametric classes (essentially whenever
covering numbers are bounded) [B SY’22]

 Handling the nonparametric case needs different ideas (Distributional
Sequential Rademacher complexity)

 Whether a "natural” covering-based “algorithm™ exists is an interesting open
question
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Unknown

Realizable T-'dlog(T/o) Part 1
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» When u is not known, we can’t construct a net for &

* The only “clue” we have about i is from the realized samples.
But not enough samples to “learn” u. In fact, not necessarily identifiable

e Surprise Lemma to the rescue

1 [
Let pt — 7 Zps'
s=1

Then, p, < p,_ for most 1.



Algorithm for Unknown Base Measure

» When u is not known, we can’t construct a net for &

* The only “clue” we have about i is from the realized samples.
But not enough samples to “learn” u. In fact, not necessarily identifiable

e Surprise Lemma to the rescue

e |nstead of likelihood ratio, keep track of number of times a net on the
historical data is not a good representation of & for future data

 With a clever epoching idea [B25] gets do~'T rate.
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* So far, we have not talked too much about efficiency
 What is the right notion of efficiency here?
* \We want to reason about arbitrary concept classes

* Oracle Efficiency: Assume access to optimization “oracle” for class

&

Deep learning SAT Solvers Integer Programming
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Oracle Efficiency

Empirical Risk Minimization

f € argmin L (f) L(f) = Z C(f(X),Y)

fex#

Can we efficiently reduce online learning to statistical learning?

With smoothness, Oracle efficiency is achievable
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Oracle Efficiency with Known Measure

* U I1s known and access to ERM oracle

* Algorithmic framework: Follow-the-perturbed leader | ]
- Historical data: 5, = {(X;, Y}) },

» Given X, ; make a prediction for Y, ,

Historical |
Data '
Si-1
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Run ERM on Historical data: S, = {(X;, Y}) },, U Hallucinated data {Z,
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Data
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Analysis: Stability

Algorithm: Sample {Z;} ~ u. Label at random

Run ERM on Historical data: S, = {(X;, Y}) },, U Hallucinated data {Z, Yi}

In typical analysis of FTPL-type algorithms, we look at stability

~X,~D, [ - ftNALGf (f (X)), Y) — f;HNALGmLﬂ (]? 1(X0), ¥ t)]

\ (X, Y,) in “training data”

Observation: connection to Rademacher/Gaussian processes is due to the Hallucinated
data having random signs
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Theorem

— ftN ALth (]? t(Xt)a Y t) —

_XtN@t [

TV(ALGt, _ZtNt[ALGH‘l])

+E; CALG, XX~ [f (fi+1(X), 1) 7 C(J (X0 Yy )]

_ftHNALGtHf(le(Xt)’ Yt)] <

“Generalization error” under resampling from smooth distribution
using coupling to extract a subsequence from the hallucinated

examples that “looks” like 9,
“Average stability”

Analysis using stability of emp processes
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Theorem

o [Erarc £ G0 X0 = B a0, )] <

+1

TV(ALGt, _ZtN@t[ALGH‘l])

T} ~ALG,, XX~ [f J141(Xe) Yy) = €(F 131 (X)), YD]

Both steps crucially use smoothness and coupling arguments
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Oracle Efficiency with Known Measure

Algorithm: Sample {Z;} ~ u. Label at random

Run ERM on Historical data: S, = {(X;, Y}) },, U Hallucinated data {Z, Yi}

Coupling lemma as an algorithmic method to generate synthetic data: Accounts for
uncertainty “worry” about bad events under |ID

Key technical contribution: Technique for algorithmic generalization for data from
“unseen” distributions

Coupling relates stability of the algorithm to that of Rademacher/Gaussian processes
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Oracle Efficiency with Known Measure

Theorem [HHSY’21,B ]: Known base measure oracle efficient smoothed
online learning we have

ve(F)
ol

— [RegT] S

Rate can be improved to o1 for binary classification using “Poissonization” [HHSY’21]

Historical |
Data i R
St 1U f
e , +1
Hallucinated ?;
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Computational Lower Bounds

Theorem [HHSY’21,B ]: Any proper algorithm that has o (\/ Td\/;)

regret in smoothed online learning needsy\/ d/c oracle calls.

Note that the statistical algorithm requires exponential in d time

Can we do better than running experts on a (large) net? Or are there matching
lower bounds
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Other Applications

o Statistical and Computational Equivalence between Statistical Learning and
Smoothed Online Learning [HRs S B BRS'24, BP'23]

* Private Learning with public data [HRrs 20, BBDS BS'25]
* Online Discrepancy minimization [HRS21]

» Data-driven Algorithm design [HRs21]

 Bandits, RL, Robotics [B B B B ]

« Equilibria Computation in General Games [DGHS 23]
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Key Takeaways

Smoothed data bridges efficiency of statistical
learning and robustness of online learning.

Technical tools:

(i) Surprise Lemma (compactness)
(i) Coupling (rejection sampling)
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efficiency

at all?
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dependence

on o?

Realizable
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Broader Open Problems

Algorithmic Epistemic

What is the best way to capture
the relation of the past and the
future?

What is a good oracle model
for modern ML?

E.g. Oracles for sampling, E.g. Abstention, relaxed
LLMs benchmarks
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